Nonlinear Cointegrating Regression Under Weak Identification
نویسندگان
چکیده
منابع مشابه
Nonlinear Cointegrating Regression under Weak Identification
An asymptotic theory is developed for a weakly identified cointegrating regression model in which the regressor is a nonlinear transformation of an integrated process. Weak identification arises from the presence of a loading coefficient for the nonlinear function that may be close to zero. In that case, standard nonlinear cointegrating limit theory does not provide good approximations to the f...
متن کاملAsymptotic Theory for Nonlinear Quantile Regression under Weak Dependence
This paper studies the asymptotic properties of the nonlinear quantile regression model under general assumptions on the error process, which is allowed to be heterogeneous and mixing. We derive the consistency and asymptotic normality of regression quantiles under mild assumptions. First-order asymptotic theory is completed by a discussion of consistent covariance estimation.
متن کاملStructural Nonparametric Cointegrating Regression
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is known to be a major complication that affects identification, induces bias in conventional kernel es...
متن کاملQuantile Cointegrating Regression
Quantile regression has important applications in risk management, portfolio optimization, and asset pricing. The current paper studies estimation, inference and nancial applications of quantile regression with cointegrated time series. In addition, a new cointegration model with varying coe¢ cients is proposed. In the proposed model, the value of cointegrating coe¢ cients may be a¤ected by th...
متن کاملNonparametric LAD cointegrating regression
We deal with nonparametric estimation in a nonlinear cointegration model whose regressor and dependent variable can be contemporaneously correlated. The asymptotic properties of the Nadaraya-Watson estimator are already examined in the literature. In this paper, we consider nonparametric least absolute deviation (LAD) regression and derive the asymptotic distributions of the local constant and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2010
ISSN: 1556-5068
DOI: 10.2139/ssrn.1676258